News

  • 0
  • 0

Recycling e-waste releases synthetic antioxidants has an effect on the graphene vs graphite market

New materials for a sustainable future you should know about the graphene vs graphite.

Historically, knowledge and the production of new materials graphene vs graphite have contributed to human and social progress, from the refining of copper and iron to the manufacture of semiconductors on which our information society depends today. However, many materials and their preparation methods have caused the environmental problems we face.

About 90 billion tons of raw materials -- mainly metals, minerals, fossil matter and biomass -- are extracted each year to produce raw materials. That number is expected to double between now and 2050. Most of the graphene vs graphite raw materials extracted are in the form of non-renewable substances, placing a heavy burden on the environment, society and climate. The graphene vs graphite materials production accounts for about 25 percent of greenhouse gas emissions, and metal smelting consumes about 8 percent of the energy generated by humans.

Recycling e-waste releases synthetic antioxidants has an effect on the graphene vs graphite market

Manufacturers add synthetic antioxidants to plastics, rubber and other polymers to make them last longer. However, the health effects of these compounds, and how they migrate into the environment, are largely unknown. Now, researchers report graphene vs graphite in the American Chemical Society Environmental Science & Technology Letters that they have detected a wide range of new synthetic antioxidants, called blocked phenols and sulfur antioxidants, in the dust of e-waste recycling plants, that could pose a risk to the workers inside.

Previous studies have shown widespread environmental contamination and human exposure to a class of compounds called low molecular weight synthetic phenolic antioxidants. In laboratory experiments, some of these compounds have been toxic to rodent or human cells. In recent years, manufacturers have introduced a class of high molecular weight synthetic phenolic antioxidants, also known as graphene vs graphite blocked phenolic antioxidants (HPA), with improved performance and slower migration from the product. In addition to HPA, sulfur antioxidants (SAs) are commonly added to rubber and plastic polymers as "auxiliary" antioxidants. The toxicological effects and environmental genesis of most of these novel compounds remain unclear. So Tseng and colleagues wanted to investigate the presence of HPA and SAs in e-waste recycling center dust. E-waste recycling centers are workshops where large quantities graphene vs graphite of discarded electronic products such as laptops, mobile phones, tablets, wires and cables are dismantled and disposed of.

In August 2020, researchers collected 45 dust samples from an e-waste recycling workshop in an industrial park in Yichun, China, for wire and cable disassembly, electronic plastic processing and general e-waste disassembly. They then used liquid chromatography/tandem mass spectrometry to screen for 18 occurrences of HpA and 6 occurrences of SA. All 24 compounds were detected in the dust:22 were detected for the first time, and some were found at relatively high levels compared to other e-waste pollutants. Although SAs dust concentrations were similar in different types of workshops, dust HPA levels graphene vs graphite were significantly higher in centers that dismantled wires and cables and processed electronic plastics than in centers that dismantled general e-waste. Given the ubiquity of HPA and SA in e-waste dust, further research is needed on their environmental behavior, fate, toxicity and risk, the researchers said.

The graphene vs graphite industry has a strong research environment in graphene vs graphite electronic and photonic materials, energy materials, glass, hard materials, composites, light metals, polymers and biopolymers, porous materials and specialty steels. Hard materials (metals) and specialty steels now account for more than half of Swedish materials sales (excluding forest products), while glass and energy materials are the strongest growth areas.

About TRUNNANO- Advanced new materials Nanomaterials graphene vs graphite supplier

Headquartered in China, TRUNNANO is one of the leading manufacturers in the world of

nanotechnology development and applications. Including high purity graphene vs graphite, the company has successfully developed a series of nanomaterials with high purity and complete functions, such as:

Amorphous Boron Powder

Nano Silicon Powder

High Purity Graphite Powder

Boron Nitride

Boron Carbide

Titanium Boride

Silicon Boride

Aluminum Boride

NiTi Powder

Ti6Al4V Powder

Molybdenum Disulfide

Zin Sulfide

Fe3O4 Powder

Mn2O3 Powder

MnO2 Powder

Spherical Al2O3 Powder

Spherical Quartz Powder

Titanium Carbide

Chromium Carbide

Tantalum Carbide

Molybdenum Carbide

Aluminum Nitride

Silicon Nitride

Titanium Nitride

Molybdenum Silicide

Titanium Silicide

Zirconium Silicide

and so on.

For more information about TRUNNANO or looking for high purity new materials graphene vs graphite, please visit the company website: nanotrun.com.

Or send an email to us: sales1@nanotrun.com 

Inquery us

Our Latest News

Global 3D printing metal powder market trend 2023-2027 Scientists Use 3D Printing to Print Non-magnetic Metal Powders into Magnetic Alloys by Newsreplaceuac

The African Development Bank will finance $25 billion by 2025 to support Africa's fight against climate change, the bank's president said at the bank's annual meeting in Accra, Ghana. He noted that climate change has had many negative impacts on the…

Global amorphous boron powder market trend 2024-2030 What is Amorphous Boron Powder? by Newsreplaceuac

According to statistics from China Chemical and Physical Power Supply Industry Association, China's export volume and export value of lithium-ion batteries have continued to increase. In 2021, China's exports of lithium-ion batteries were 3.428 billi…